
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2021

Error Detection in Quantum Algorithms Error Detection in Quantum Algorithms

Simeon R. Hanks

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Other Computer Sciences Commons, and the Physics Commons

Recommended Citation Recommended Citation
Hanks, Simeon R., "Error Detection in Quantum Algorithms" (2021). Theses and Dissertations. 5013.
https://scholar.afit.edu/etd/5013

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.afit.edu%2Fetd%2F5013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholar.afit.edu%2Fetd%2F5013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5013?utm_source=scholar.afit.edu%2Fetd%2F5013&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

QUANTUM COMPUTING USING ERROR
DETECTION

THESIS

Simeon R. Hanks, Capt, USAF

AFIT-ENP-MS-21-M-120

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENP-MS-21-M-120

QUANTUM COMPUTING USING ERROR DETECTION

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Physics

Simeon R. Hanks, B.S.

Capt, USAF

March 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENP-MS-21-M-120

QUANTUM COMPUTING USING ERROR DETECTION

THESIS

Simeon R. Hanks, B.S.
Capt, USAF

Committee Membership:

Dr. D. Weeks, Ph.D.
Chair

Dr. L. Merkle, Ph.D.
Member

Maj D. Emmons, Ph.D.
Member

www.manaraa.com

AFIT-ENP-MS-21-M-120

Abstract

Quantum computers need to be able to control highly entangled quantum states

in the presence of environmental perturbations that lead to errors in calculations.

Progress in superconducting qubits has enabled the development of computers capable

of running small quantum circuits. The current era of Noise Intermediate Scale

Quantum computing has a high error rate. To alleviate this error rate we apply

an encoding scheme that allows us to remove results with known errors improving

the quality of our results. The encoding uses multiple qubits as a single logical

qubit and balances the natural tendency of state-of-the-art quantum computers to

decohere towards the ground state. We use a mix of ones and zeroes in each logical

qubit in such a way that we can identify and remove results that have violated our

specified encoding pattern. The statistical performance of the circuits is improved by

retaining the shots that maintained the encoding. Bit flip error detection is applied

to the Toffoli gate and produces improved probability distribution functions as well

as enhanced similarity measures when compared to its unencoded equivalent.

iv

www.manaraa.com

AFIT-ENP-MS-21-M-120

This thesis is dedicated to my wife for supporting me through school, pushing me to

always move forward, and being my best friend and world-traveling partner.

v

www.manaraa.com

Acknowledgements

I would like to acknowledge Dr. Weeks, my committee, and the faculty of the

Engineering Physics department for their valuable inputs, guidance, and patience in

the production of this thesis.

Simeon R. Hanks

vi

www.manaraa.com

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

I. Introduction . 1

1.1 Quantum Computing in the Classical Era . 1
1.2 Error Correction . 2
1.3 Error Detection . 3

II. Logic, Bits, and Operators . 4

2.1 Classical Logic, Bits, and Operators . 4
2.2 Quantum Logic, Bits, and Operators . 6

III. Modern Quantum Computers . 10

3.1 Coding On IBM Q Computers . 10
3.2 Verifying Results . 10

3.2.1 Probability Distribution Function . 11
3.2.2 Similarity Measure . 11

IV. Analysis and Development of Quantum Circuits . 14

4.1 State Analysis and Error Detection . 14
4.2 Logical Encoding . 17

4.2.1 Comparison of Unencoded and Encoded Bell
State . 19

V. Results . 23

5.1 Results . 23
5.1.1 The Three-Qubit Error Correction Code . 23
5.1.2 Toffoli Gate . 25
5.1.3 Encoding the Toffoli Gate . 27
5.1.4 Encoding Bit Flip Error Correction . 31
5.1.5 Logical Bit Flip . 35

VI. Conclusion . 38

6.1 Future Work . 38
6.2 Final Thoughts . 38

vii

www.manaraa.com

Page

Appendix A. Physical and Logical Circuits Implemented in Qiskit 40

Appendix B. Analysis and Parsing of IBM Q Data . 47

Bibliography . 55

viii

www.manaraa.com

QUANTUM COMPUTING USING ERROR DETECTION

I. Introduction

1.1 Quantum Computing in the Classical Era

Classical computers are what we refer to as “computer” in day to day life. From

your digital watch to the server you used to retrieve this document, we say it was done

on a computer. Colloquially we say, “It’s all a bunch of ones and zeroes.” Grossly

oversimplifying how a computer works, but accurately describing the language in use

in all of our computers today. The computers we use today are digital and use solid

state devices to achieve their switching function. These digital computers are the

ancestors of analog computers. Analog computers used electricity in vacuum tubes

to conduct “on/off” operations to compute calculations on room-sized machines [1].

These analog computers were in turn the ancestors of mechanical computers that

used the transfer of forces through instruments to physically perform computations.

If we follow this lineage far enough back we arrive at the oldest known computer, the

abacus, which had a series of beads that were moved in such a way as to aid humans

with arithmetic operations.

Quantum computers are now arriving and are often mistaken as the natural succes-

sor in this long line of computers. This is a flawed assumption as a quantum computer

does not necessarily perform better than a classical computer in all operations [2].

While any computational operation on a classical computer can be conducted on a

quantum computer, and vice versa [3], it does not mean that these systems perform

those operations with the same efficiency.

1

www.manaraa.com

A classical computer offers a deterministic solution. Meaning that we can rely

on the fact that if we input one state and apply the same operation, the output will

always be the same. This deterministic capability is exactly what gives computers

their utility. If we wish to add two numbers, we understand that the result will

be their sum. In a quantum computer, if we add two states, we will arrive at a

linear superposition of their possible outcomes [2] [4]. Meaning that the result is not

always state A or state B, but if we run the experiment multiple times we can get

a distribution of state A or state B. This non-deterministic behavior is our first step

into a quantum world. We can no longer rely on the idea that, “if A acts on B then

C results,” which is both intimidating and exploitable [5].

The obvious problem in this new way of thinking is that if we don’t know what

the answer is going to be, how do we trust the measured output? This is where we

need to create tools that will help reign in quantum computers and give us confidence

the the resulting solutions [6]. Namely we can use error detection, which allows us to

throw away results that are known to be noise, and error correction, which enables

us to correct mistakes in the calculations as they run.

1.2 Error Correction

It is of critical importance that we understand when a mistake in a calculation

has taken place. This could be anything from an erroneous input to an operator not

adding two inputs correctly.

In classical computers error correction at the hardware level is rarely used out-

side of specific sensitive hardware like those found in medical, banking, or military

applications where no error can be tolerated[7]. When a hardware error occurs, the

system will shutdown to protect any potential damage and give the user a message

similar to a blue screen of death on a Windows operating system. Where this kind of

2

www.manaraa.com

failure is forbidden or catastrophic, redundant systems are used to check one another

until the next operation takes place, greatly reducing the probability of two errors

occurring simultaneously.

On a quantum computer this style of error correction is impossible due to the non-

deterministic nature of the state vectors [8]. Even if two states are prepared identically

and ran through the same operators, we can not verify that one is evolving correctly

based on the measurement of the other. The wave forms are not entangled and any

measurement of one would not give us information about the other.

What we can do is create a system that knows when an error has occurred using

control gates that provide syndromes. If the syndrome on the output is found to

be one way, we can implement corrective actions to undo that error [9]. We will

discuss such an algorithm in the main body of work and show how we are further

able to implement encoding to this corrective action to increase our confidence in a

syndromes result.

1.3 Error Detection

Unlike error correction where the fault is repaired, error detection is used to iden-

tify when an error has occurred and use that information to modify or remove various

data sets.

In Section 4.2 we will show how we are able to leverage two physical qubits to

create an error detection scheme that greatly increases confidence in our results. We

do this by running quantum computing algorithms through a physical computer and

comparing those results to known solutions as a method of validating our techniques.

3

www.manaraa.com

II. Logic, Bits, and Operators

2.1 Classical Logic, Bits, and Operators

Computers must follow certain rules in order for them to be useful. If a given

input is entered, an expected output should result. This is done through the mech-

anisms inside a given machine. Whether it be two levers that force a third lever up

representing a change in a variable or two nodes on a silicon chip that have their

voltages changed causing a third node to modify its value, we expect a machine to

follow known rules. How exactly the input translates to a given output is dependent

on the logical operators inside a system, the values put into those operators, and the

resulting output.

The smallest piece of computational information is called a bit. A bit is a port-

manteau of the words binary and digit [10], which is exactly how a bit functions.

A bit can hold either the value one or zero and represents information in a system.

How a bit is physically measured or stored is left up to the human imagination and

the capability of engineers. Modern computers have stored them on everything from

paper punch cards to a single photon in an optical fiber [11].

Classical computer circuits are built on Boolean logic which depends upon having

binary information. This meaning that they use AND, OR, NOT, NAND, NOT,

XOR, and XNOR gates as operators to conduct computational operations on one

and zero inputs and return one and zero outputs. We will only be discussing the

AND and OR gates here as examples of classical computation operators.

4

www.manaraa.com

x

y

xy

(a) AND gate with inputs x and y and outputs xy.

x y xy
1 1 1
1 0 0
0 1 0
0 0 0

(b) Truth table for an AND gate.

Figure 1. An AND gate with two inputs x and y and the resulting truth table for their
product xy.

In the AND gate shown in Fig. 1 you can apply basic Boolean logic that would

read if x and y are both 1, then xy is also equal to 1. The fact that all actions and

responses are represented by the “on” or “off” state is the basis and definition of

Boolean logic.

x

y

x+ y

(a) OR gate with inputs x and y and outputs x+ y.

x y x+ y
1 1 1
1 0 1
0 1 1
0 0 0

(b) Truth table for an OR gate.

Figure 2. An OR gate with two inputs x and y and the resulting truth table for their
sum x+ y.

In the case of the OR gate shown in Fig. 2 we would read it as, if x or y are equal

to 1, then the output will also be 1. This includes the redundant case where both

values are equal to 1.

Although both these gates represent their operations in terms similar to those

used in elementary algebra it is worth noting that this language is misleading. With

the AND gate you appear to get the product of x and y, but this terminology is more

a matter of convention than an actual multiplication of the two binary inputs. For

instance, look at the OR gate where we “sum” the inputs of 1 and 1, we do not get

5

www.manaraa.com

2, as 2 does not have a binary analog.

Using these two gates and their inverses Not AND (NAND) and Not OR (NOR)

you can begin to build logical circuits that can start to implement practical computing

and perform operations that we would call multiplication and summation in the

traditional sense of the word.

The field surrounding how to go from bits and simple operators to the modern

computer is an entire area of research in itself and well outside the scope of this

thesis. It is useful to be familiar with these concepts as we get in to the strange world

of quantum computers where our famous bit finds itself in both the state 1 and 0

simultaneously.

2.2 Quantum Logic, Bits, and Operators

As with classical computers, quantum computers work with information. We call

this unit of information a qubit, which is a portmanteau of quantum and bit (which

we already know as a binary digit). So what is a quantum binary digit? Most simply

it is a two-level system that can be in a ground state 0, an excited state 1, or a

linear combination of the two with some probability of existing in either state upon

measurement. When we measure a state vector we will get a binary result. But if

we measure that same calculation again we may get a different binary result. This

requires us to take multiple measurements to find a statistical probability of a given

state vector occurring and telling us the answer to our calculation.

6

www.manaraa.com

Instead of logical gates quantum computers, at the least the IBM quantum com-

puters used for this research, rely on five unitary operators:

U3(θ, φ, λ) =

 cos (θ/2) −eiλ sin (θ/2)

eiφ sin (θ/2) eiλ+iφ cos (θ/2)

 , (1)

U2(φ, λ) = U3(π/2, φ, λ) =
1√
2

 1 −eiλ

eiφ eiλ+iφ

 , (2)

U1(λ) = U3(0, 0, λ) =

 1 0

0 eiλ

 , (3)

I = U3(0, 0, 0) =

 1 0

0 1

 , (4)

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

. (5)

From these operators we are able to create gates that act on an input state and

place them into a linear superposition that will have a probabilistic output. The gates

we will need to build our algorithms include the CNOT, Hadmard, Toffoli, NOT, T,

and S.

7

www.manaraa.com

(a) CNOT gate with q0 = |0〉 and q1 = |0〉.

|q0〉 |q1〉 |z0〉 |z1〉
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(b) Truth table for a CNOT gate.

Figure 3. CNOT with inputs q0 = |0〉 and q1 = |0〉 and the resulting truth table for the
outputs associated.

A CNOT gate has a target, seen here in Fig. 3 as a circle with a plus sign on

q1 and a control shown as a single dot on q0 both connected by a line to show a

controlled gate. If the control is in an excited state |1〉 then the target will change

state, otherwise both states continue unchanged.

(a) Toffoli gate with q0 = |0〉, q1 = |0〉, and q2 = |0〉.

|q0〉 |q1〉 |q2〉 |z0〉 |z1〉 |z2〉
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(b) Truth table for a Toffoli gate.

Figure 4. Toffoli with inputs q0 = |0〉, q1 = |0〉, and q2 = |0〉 with the resulting truth table
for the outputs associated.

Like the CNOT gate, the Toffoli gate also has a target as seen in Fig. 4, but it

has two controls.The control gate of a Toffoli must have two excited states in order to

cause the target state to flip from either its excited state to ground state or ground

state to the excited state.

These gates are the only two we will use for which a truth table is enlightening.

8

www.manaraa.com

Up to this point the resulting state is labeled with 1’s and 0’s. But let us now take

a look at the Hadamard gate, where the fun begins. Using the universal operators

above we can get the matrix representation of the Hadamard gate as follows:

Hadamard: H = U3(π/2, 0, π) = U2(0, π) =
1√
2

 1 1

1 −1

 (6)

This gate acting on a two-level qubit will place it into a linear superposition such

that it’s probability of being 0 or 1 is equal when measured [12].

(a) Hadamard gate with q0 = |0〉 and q1 = |0〉. (b) Measurement probability for a Hadamard gate.

Figure 5. Hadamard with inputs q0 = |0〉 and q1 = |0〉 with the resulting measurement
probability histogram.

When a state vector is prepared with two qubits in the ground state as seen in Fig.

5 the resulting measurement should be an equal probability of q0 = |0〉, q1 = |0〉, and

q0 = |0〉, q1 = |1〉! For ease of notation we will label these state vectors as |ψ〉, because

that’s what they are, a single function. We will then say that |ψ〉 = 1√
2
(|00〉+ |01〉).

Now we have two controlled gates and a quantum operator and can begin to build

our circuits. We will describe other gates as they become necessary.

9

www.manaraa.com

III. Modern Quantum Computers

3.1 Coding On IBM Q Computers

Before we get into the circuits let’s look at the tools we are using to access our

physical quantum computers. We are using IBMs quantum computers due to their

ease of use and state-of-the-art technology. They make many of their computers

publicly accessible and through AFRL, AFIT has access to their larger systems.

IBM uses transmon qubits for their systems which are charge insensitive cooper

pair boxes that behave as anharmonic oscillators that allow for pulsed microwaves to

either prepare a qubit in its ground state, excite it, or act on a qubit with an arbitrary

quantum operator [13] [14]. Operators and gates are achieved via waveforms that are

empirically created by the engineers at IBM that provide the appropriate action of a

quantum mechanical operation. These pulses must be calibrated daily as the machine

falls in and out of its optimal functioning condition. This information is useful to us

because the results of different runs of the same circuits may have better or worse

results. One way of overcoming this uncertainty in calibration is to conduct multiple

runs and collate those results into bins so that we can see how far they deviate from

their theoretically expected values.

3.2 Verifying Results

In order to make use of a computation, whether classical or quantum, you must

be able to both input data, operate on it, and measure the result. Classically this

is achieved by measuring the voltages on the gates and using those measurements to

provide output to a user. On IBM’s quantum computers we achieve this by measuring

the state vector at the end of a run on each qubit and analyzing the distribution of

states on a given circuit. If |ψf〉 = 1√
2
(|00〉+ |11〉) we would expect to see 50% of the

10

www.manaraa.com

results in each state, but in reality we see about about the same quantity in each state

with some non-zero measurements in the states |01〉 and |10〉. We use a probability

distribution function to view the number of measurements in a given run and their

resulting state vectors. To see if these are good runs we then compare each separate

run to its expected theoretical value and use this to find a similarity measure.

3.2.1 Probability Distribution Function

The most common way the data for quantum computers is measured is with

a probability distribution function (PDF). What we see on probability distribution

functions is a count of how many times each vector state was measured after a set

number of runs. Due to the nature of quantum mechanics and the linear superposition

of multiple states we get both valid and invalid states. A state is valid when it is within

the range of quantum mechanically allowed states and invalid if it is a result of noise.

Unfortunately, in the current era of Noise Intermediate Scale Quantum computing we

can not immediately distinguish between quantum mechanical fluctuations and the

results due to noise in our system.

3.2.2 Similarity Measure

One question we have to ask is “Is this a good result?” What does a good result

look like? To do this we use an analytic solution as a baseline and compare it to a

measured PDF. If we expect a state vector |ψ〉 = |00〉 and measure |00〉 100% of the

time we know that the computer is working “perfectly.” This is only possible in a

simulator as we know that an actual quantum computer is noisy and subject to error.

11

www.manaraa.com

To investigate the similarity of our results to our expected results let us use the

following equation:

µ = 1−
2k−1∑
n=0

|Pn − P e
n|

2
(7)

Where Pn is the measured probability and P e
n is the expected probability of a given

state. We would expect µ to be equal to 1 in a perfect simulation and closer to 1 in

a machine with less noise. For k qubits we will have a distribution of states equal to

2k and will have to measure their arithmetic average to find their similarity to the

exact result.

Figure 6. This probability distribution is the result of 6469 shots of an encoded Bell
State recorded on the IBM Santiago quantum computer.

12

www.manaraa.com

If we look at the probability distribution in Fig. 6 we expect a 50% chance of

|1010〉 and 50% chance of |0101〉 for these results. We in fact measured some states

in |1001〉 and |0110〉 that will lead to our similarity measure moving away from the

theoretical value of µ = 1. To find µ for this measured distribution we use Eq. 7 as

follows:

µ = 1− (|P0101 − P e
0101|+ |P0110 − P e

0110|+ |P1001 − P e
1001|+ |P1010 − P e

1010|)
2

= 1− (|0.479− 0.50|+ |0.006− 0|+ |0.009− 0|+ |0.506− 0.50|)
2

= 0.979

(8)

Which tells us that the measured results are 97.9% similar to our exact solution.

We will use this method throughout the paper to compare the measured results to our

expected value as a method of testing the validity of our encoding schemes against

their unencoded counterparts. While knowing that a single point is 97.9% similar is

useful, we are still using a relatively noisy quantum computer, and we will want to

make multiple runs of each circuit and bin these results in a histogram. This will

show the distribution of similarity on similar machines over many runs. This spread

of similarity measures will give us a more general idea of the accuracy of our results

as well as provide insightful information as to the the spread of noise between large

sets of shots. Using the similarity measure in this manner for both the encoded and

unecoded circuits gives us an idea of how close each is to the analytic solution but

does not necessarily tell us objectively quantifiable value to our results.

13

www.manaraa.com

IV. Analysis and Development of Quantum Circuits

4.1 State Analysis and Error Detection

To follow the logic of a quantum circuit you must first create the initial states

and then look at the operators that will act on each state as it progresses through

a given circuit. To better illustrate this let us look at a simple quantum circuit, the

Bell State.

Figure 7. The Bell State. Which uses one Hadamard gate to create a linear super-
position of of the |00〉 and |11〉 states each with a 1√

2
probability .

The Hadamard gate will give us the states

|ψ〉 =
(|00〉+ |10〉)√

2
(9)

Which is the super-position of the |00〉 input and the |10〉 excited state, each in

equal probability of occurring. The Hadamard creates the two possibilities of either,

q0 = |0〉 and the CNOT control not flipping the CNOT target or q0 = |1〉 acting on

the control bit of the CNOT gate causing q1 = |1〉 to yield |ψ〉 = 1√
2
(|00〉+ |11〉).

Classically, this will result in two states each with a Probability Distribution Func-

tion giving them a 50% chance of occurring. This is where the quantum mechanics

comes into play. If this circuit is ran through a simulator you get the states as ex-

14

www.manaraa.com

pected one half in the |00〉 state and the other half in the |11〉 state. The Bell State

defies these results when ran on a physical quantum computer because we get the

states |01〉 and |10〉 at some non-zero probability.

Figure 8. This probability distribution is the result of 8192 shots of the Bell State
recorded on the IBM Santiago quantum computer. We in fact measure the states |01〉
and |10〉, clasically impossible, as well as the state |00〉 having a higher probability of
occurring.

To analyze this circuit we must look at the wave function as it progresses through

the circuit. Let us do this by drawing a line immediately after the input values.

Figure 9. Define this state as |ψ0〉 which is equal to |00〉 here as we have initialized
q0 = |0〉 and q1 = |0〉.

In the next step of analysis q0 = |0〉 will be operated on by the Hadamard gate

which will place it in both the excited state and ground state simultaneously.

15

www.manaraa.com

Figure 10. Define this state as |ψ1〉 which is equal to |00〉 + |10〉 as q0 = 1√
2
(|0〉+ |1〉) while

q1 = |0〉 remains true.

We will omit the 1√
2

for the state |ψ〉 from here forwards.

Figure 11. Define this state as |ψ2〉 which is equal to |00〉 + |11〉 as the CNOT gate has
a control on q0 that does nothing when q0 = |0〉 or flips the target q1, when q0 = |1〉

.

This process of explicitly following the state vector as it progresses through a

circuit is essential for the analysis of quantum computational circuits. It allows us

to know what will happen and what we expect to measure at the end. In reality we

tend to get noise from quantum phenomena or from the limitations of using physical

quantum computer.

16

www.manaraa.com

4.2 Logical Encoding

One known limitation is that the quantum computers we are using at IBM tend

to decohere towards the ground state due to the nature of the transmon qubits,

which are not perfectly isolated from the environment giving the false sense that the

state |00〉 is more likely than |11〉 in the example of the Bell State. One method for

overcoming this physical limitation is to use quantum encoding, where we use two

bits to represent a single logical qubit.

Figure 12. This is the encoded Bell State with a logical q0L = |01〉 composed of a physical
q0 and q1 and a logical q1L = |01〉 composed of a physical q2 and q3 where we take |01〉
to be our logical zero. The circle and plus sign without a target is the NOT gate and
flips the qubit from one state to the other.

This logical encoding allows us to use all the same gates as its non-encoded

counter-part but divides the decoherence equally between q0L and q1L. The trade-off

here is that we have to use twice as many qubits to construct the same function,

potentially exposing us to a higher risk of adding noise to our results. This is offset

by the fact that we can use the state vectors that result from these runs to see if they

have fallen into an allowed state, effectively creating error detection.

With the physical Bell State we had the states |00〉 or |11〉 divided into equally

probable amplitudes, with some non-zero chance of getting |01〉 and |10〉 as shown in

the probability distribution function. Likewise, with the encoded version we expect

|00〉L and |11〉L.

17

www.manaraa.com

Since we are dealing with a noisy machine, we will end with states that are not

allowed. Meaning that some of the resulting state vectors are composed of illogical

qubits such that q0L or q1L end up in a state that is not |01〉 or |10〉. Since we know

that |00〉 and |11〉 physical do not match our encoding scheme, we can be certain an

error has occurred and remove that result from our data. This is the actual method

of error detection used in our results.

Figure 13. This probability distribution is the result of 8192 shots of the encoded Bell
State recorded on the IBM Santiago quantum computer.

By looking at the histogram displayed in Fig. 13 you can see that the overall

pattern agrees with what we expect, but there are 12 states that can not possibly

exist. The states |00〉L and |11〉L are clearly dominant and the preference towards

one or the other is no longer pronounced.

Now if we apply our error detection, meaning any logical qubit that is measured

18

www.manaraa.com

without an allowed encoding we see the power of error detection in action in Fig. 14.

Figure 14. This probability distribution is the result of 6469 shots of the encoded Bell
State recorded on the IBM Santiago quantum computer. Note that 1,723 invalid states
were removed.

Note that in Fig. 8 we used all 8192 shots and had a 54% to 43% distribution

of the |00〉 and |11〉 states. We can use these concepts of state analysis and error

detection on any circuit that we choose and will demonstrate it’s utility on a bit flip

error correction circuit in the following sections.

4.2.1 Comparison of Unencoded and Encoded Bell State

Now let us look at 20 runs on the unencoded Bell State and compare the PDFs

and similarity measures discussed in Section 3.2.2. We will measure the results of

8192 shots 20 times on each circuit of the Bell State, which will give us a probabilistic

19

www.manaraa.com

distribution of the various state vectors we can expect.

Figure 15. This probability distribution is the result of 163,840 shots of the physical
Bell State recorded on the IBM Sydney quantum computer.

In Fig. 15 we again see that even after 160,000 shots are measured we have a clear

bias towards the ground state |ψf〉 = |00〉.

20

www.manaraa.com

Figure 16. This probability distribution is the result of 137,204 shots of the encoded
Bell State recorded on the IBM Sydney quantum computer. Note that 26,636 invalid
states were removed.

By inspection we see that in Fig. 16 the distribution is much closer to being equal,

where |ψf〉L = 1√
2
(|00〉L + |11〉L), but without an independent way to measure this

improvement we are left with only an instinct as to what may have improved or how

our encoding scheme has shaped our results. This is where we apply Eq. 7 to each

of the 20 runs for the physical, encoded without error detection, and encoded with

error correction to get an overlapping histogram of the respective results.

21

www.manaraa.com

Figure 17. Similarity measure of an encoded Bell State compared to its physical equiv-
alent.

In Fig. 17 blue represents our encoded results without error detection applied,

yellow is the unencoded Bell State, and pink is the encoded circuit with error detection

applied. We see that the results for the similarity measures tend to be tightly grouped

around the 0.80, 0.91, and 0.97 bins respectively, where each bin represents how

similar the results are to the analytic solution on a scale from 0 to 1. This shows

us that after 160,000 shots that our error detection method does give repeatable and

more consistent results than that of the the unencoded equivalent circuit.

22

www.manaraa.com

V. Results

5.1 Results

We want to use or error detection encoding of logical qubits using two-level phys-

ical qubits to implement the three-bit bit flip error correction code. To do this we

must first look at the physical representation of the bit flip algorithm and see its

utility then address the fact that the Toffoli gate is a three-qubit gate that cannot be

directly encoded using physical two-level qubits.

5.1.1 The Three-Qubit Error Correction Code

This piece of code was first proposed by Asher Peres in 1985 as a means to alleviate

the susceptibility of quantum states to spontaneous flips [15].

Figure 18. Thee-qubit bit flip error correction algorithm used to correct an error and
identify when an error has occurred.

Here we arbitrarily choose the Hadamard gate to represent an input wave |ψ0〉 that

will run through our bit flip error correction algorithm. The purple box represents an

event that could be any one of the three qubits flipping or all three qubits progressing

unchanged. The Hadmard and two CNOT gates create the state |ψ1〉 = |000〉+ |111〉

and this first part of the circuit is called the encoding. We have encoded our |ψ0〉

onto the |q1〉 and |q2〉 qubits.

23

www.manaraa.com

After the event, one or none of the qubits changes states, we can expect one of

four possible states: no flips occurred, q0 flipped, q1 flipped, or q2 flipped. Which

leaves us with four possible |ψ2〉 states immediately after the event.

The next two CNOT gates will handle the decoding of the flipped qubit and give

us a state that will be operated on by the Toffoli gate and repair the flip or let us

know that no flips have occurred.

Let us follow the case where no flip occurs. If we take |ψ2〉 = |000〉 + |111〉

immediately before the event then assume no flips took place:

• The state |000〉 does not set the control gates high, therefore the q1 and q2 qubits

continue unchanged.

• The alternate state |111〉 sets the control gate to high, therefore the q1 and q2

qubits flip.

• The result is |ψ3〉 = |000〉+ |100〉 and this will be acted on by the Toffoli gate.

This leaves our original Hadamard intact on |q0〉 = |0〉 + |1〉 with the q1 = 0 and

q2 = 0. We call |00〉 the syndrome and the syndrome says no flips have occurred at

the event. Finally the Toffoli gate does not have both controls set to flip so we arrive

at |ψf〉 = |000〉+ |100〉.

Table 1. State analysis after the event where either q0, q1, or q2 are flipped. |ψ2〉 is
immediately after the event, |ψ3〉 is decoded by the second set of CNOTs, and |ψf 〉 is
the final state after the Toffoli.

Flipped |ψ2〉 |ψ3〉 |ψf〉
None |000〉+ |111〉 |000〉+ |100〉 |000〉+ |100〉
q0 |100〉+ |011〉 |111〉+ |011〉 |011〉+ |111〉
q1 |010〉+ |101〉 |010〉+ |110〉 |010〉+ |110〉
q2 |001〉+ |110〉 |001〉+ |101〉 |001〉+ |101〉

In every case shown in Table 1 we retain our original |ψ0〉 in the form of a

Hadamard. And the q1 + q2 return the same values for each of the respective re-

sults. This is useful because we now know exactly what happened and retained our

24

www.manaraa.com

original waveform.

Figure 19. Probability distribution function for a bit flip error correction circuit where
we expect |ψf 〉 = |000〉+ |100〉.

The results in Fig. 19 show that over 90% of our measurements are in the correct

states, but there appears to be a preference for the |ψf〉 = |000〉 state. This is a

result of having run this computation on a physical computer that tends to decohere

towards the ground state.

5.1.2 Toffoli Gate

In Fig. 4b we showed how each of the input states on the multiple control gate

will act on the target. To create this same truth table out of two-qubit gates we will

have to engineer a gate that has the same characteristics as the Toffoli while only

using one and two qubit operators.

25

www.manaraa.com

(a) Toffoli equivalent using two and one qubit gates with q0 = |0〉, q1 = |0〉, and q2 = |0〉.

|q0〉 |q1〉 |q2〉 |z0〉 |z1〉 |z2〉
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(b) Truth table for a Toffoli equivalent using two and one qubit gates.

Figure 20. Toffoli equivalent using two and one qubit gates where q0 and q1 are the
controls and q2 the target.

The code shown in Fig. 20 operates exactly the same as a Toffoli gate and is

now suitable for use in our error detection encoding [2]. One aspect that we have

neglected is that every wave form has a phase associated with it on the Bloch Sphere

and up to this point we have been able to ignore it. To control for the phase shift as

we use this equivalent circuit we must us the T, T†, and S operators. Where the S

gate induces a π
2

phase shift about the z-axis and the T gate induces a π
4

phase shift.

26

www.manaraa.com

5.1.3 Encoding the Toffoli Gate

In Section 4.2 we showed the encoded Bell State as having two physical qubits per

a single logical qubit. Here will will further breakdown that process for application

to our Toffoli equivalent code.

(a) Hadamard gate with q0 = |0〉 and q1 = |0〉. (b) Encoded Hadamard with q0 = |0〉 and q1 = |0〉.

Figure 21. In subfigure (a) the single qubit hadmard puts q0 into a linear superposition
but leaves q1 unchanged yielding |ψ〉 = |00〉+|10〉. In subfigure (b) the encoded Hadamard
places both q0 and q1 into a linear superposition creating the |ψ〉 = |00〉+ |11〉 state.

This encoding in Fig. 21 creates a single logical qubit using the q0 and q1 physical

qubits which will allow us to use it in a larger encoded circuit. This same encoding

of two qubits for a single qubit operator applies to the T, T†, and S operators.

(a) CNOT with control q0 and target q1. (b) Encoded CNOT control q0L and target q1L.

Figure 22. In subfigure (a) we have a single CNOT With two physical qubits. In
subfigure (b) the encoded equivalent has inputs q0L = |0〉L which is made with physical
q0 = |0〉 and q1 = |1〉. While q1L = |0〉L is composed of q2 = |0〉, and q3 = |0〉.

Both the physical and encoded CNOTs in Fig. 22 share the exact same truth table

shown in Fig. 3 with the noted exception that each logical qubit is composed of either

|01〉 or |10〉. One interesting point that should be shown before moving forward is

27

www.manaraa.com

the case where the CNOT target is on a lower qubit that the control. In the physical

building of the circuit we just change which qubit functions as a control or target by

turning the CNOT gate upside down. When you encode the CNOT you must take

in to consideration that the appropriate matrices require some minor modifications.

(a) CNOT with target q0 and control q1. (b) Encoded CNOT with target q0L and control q1L.

Figure 23. In subfigure (a) we have a single CNOT With two physical qubits. In
subfigure (b) the encoded equivalent has inputs q0L = |0〉L which is made with physical
q0 = |0〉 and q1 = |1〉. While q1L = |0〉L is composed of q2 = |0〉, and q3 = |1〉.

Both configurations shown in Fig. 22 and Fig. 23 will results in a valid truth

table and can be used to construct an encoded circuit depending on the needs of the

circuit.

Now looking at Fig. 20 let us build its coded equivalent of just the Toffoli gate.

Figure 24. Encoded Toffoli with controls on q0L and q1L and target on q2L.

Note that this encoded Toffoli in Fig. 24 is identical in its function to the non-

encoded version in Fig. 20. If we run these two circuits though the IBM computers

we can see that the statistical distributions agree well with the expected states found

in their respective truth tables.

28

www.manaraa.com

Figure 25. Probability Distribution Function of an encoded Toffoli gate with |ψf 〉L =
|000〉L where the right-most state |ψf 〉 = |010101〉 as read from top to bottom.

Figure 25 is exactly what we expect to see on the truth table of a Toffoli gate.

You must read the measured results from top to bottom, with the top number being

the first qubit, |q0〉 and the lowest number being |q5〉. So the final state would be

|ψf〉 = |010101〉 which is our |000〉L equivalent. When compared to the results of our

probability distribution function of a physical gate in Fig. 26 we see that there is

agreement.

29

www.manaraa.com

Figure 26. Probability Distribution Function of an unencoded Toffoli gate with |ψf 〉 =
|000〉.

While we can see that they are in agreement it is important to have a way to

measure this, so we want to compare each run of 8192 shots on the IBM quantum

computers and use each similarity measure to see if the results are better or the same.

Figure 27. Similarity measure of an encoded Toffoli compared to its physical equivalent.

The yellow bins in Fig. 27 represent the similarity measure of the unencoded

circuit in Fig. 20. The blue and pink are the similarity measure of the circuits in Fig.

24 where blue doesn’t use error detection and pink does.

30

www.manaraa.com

5.1.4 Encoding Bit Flip Error Correction

We have now built up a library of functions we can use to implement our error cor-

rection scheme while simultaneously encoding logical qubits to utilize error detection.

Let us look at the encoded version of Fig. 18 shown here in Fig. 28.

Figure 28. Fully encoded 3-qubit bit flip error correction algorithm. Where we expect
|ψf 〉L = |000〉L + |100〉L

We know from previous work that error detection encoding will improve the prob-

ability distribution function towards a more reliable result when dealing with a simple

Bell State. We want to apply this same method to an even larger circuit in hopes

of achieving similar results and have arbitrarily chosen the bit flip error correction

circuit. If we look at the results of all 64 possible states of the encoded bit flip error

correction circuit it appears to be very noisy at a glance.

Figure 29. Probability Distribution Function of all 64 possible states on an encoded
bit flip error correction circuit where we expect |ψf 〉L = |000〉L + |100〉L.

In Fig. 29 |000〉L and |100〉L are the largest peaks but without applying error

detection it is difficult to see that any improvement, if any has occurred.

31

www.manaraa.com

Figure 30. Probability Distribution Function after applying error detection on an
encoded bit flip error correction circuit where we expect |ψf 〉L = |000〉L + |100〉L.

If we compare Fig. 30 to the probability distribution function of the unencoded

version of the bit flip seen in Fig. 29, two critical observations are made. We have

reduced the number of expected |000〉 and |100〉measurements, but have also balanced

the probability of either state being measured effectively eliminating any bias towards

the ground state!

Using our similarity measure in Fig. 31 which simply returns the deviation from

the expected probability distribution this circuit appears to have decreased the overall

reliability of our measurements.

32

www.manaraa.com

Figure 31. Similarity measure of 20 run each using 8192 shots of an encoded and
unencoded bit flip correction circuit.

The trade off of balancing the distribution of expected states of a linear superpo-

sition with the cost of having fewer measurements in those states is the final result

of this work. It is unclear if balancing the distributions is better than having more

measurements in the expected states for every application.

If we break down the process in the same way as section 5.1.1 we can see how the

depth of the circuit causes some level of deterioration in our improvement using the

logical encoded qubits.

We established the intial state as |ψ0〉 = |010101〉 + |100101〉 which is the logical

|ψ0〉L = |000〉L + |100〉L.

Figure 32. Encoded bit flip error correction circuit immediately after the first two
CNOTs.

33

www.manaraa.com

Figure 33. Similarity measure of 20 runs each using 8192 shots of an encoded and
unencoded bit flip error correction circuit immediately after the first two CNOTs.

From Fig. 32 and the similarity measure shown in 33 a marked improvement over

the unencoded portion of this circuit that is even stronger than the improvement

of the Toffoli gate. Next we decode our state vector and look at the new |ψ3〉L =

|000〉L + |100〉L.

Figure 34. Encoded bit flip error correction circuit immediately after the second two
CNOTs.

Figure 35. Similarity measure of 20 runs each using 8192 shots of an encoded and
unencoded bit flip error correction circuit immediately after the first two CNOTs.

It appears that the depth of the circuit shown in Fig. 34 with similarity measures

34

www.manaraa.com

in 35 creates some net neutral return when it comes to using only the similarity

measure, but the end results is a well balanced probability distribution function.

There are other similarity measures that could weigh the delta from the expected

values more heavily that could show that the results of the encoded circuits is even

more beneficial than we have already demonstrated. The similarity measure chosen

shows only the raw difference in the expectation values from those measured.

5.1.5 Logical Bit Flip

To ensure the robustness of our circuit and its ability to send an error syndrome

for a flip on the |q0〉L, |q1〉L, or |q2〉L we must run the circuit using a logical bit flip.

Much like the CNOT, Hadamard, or Toffoli, a logical bit flip is not as simple as a

single physical bit flipping inside of our encoded circuit. This would not represent a

logical flip and would ultimately just lead to an invalid state that our error detection

would reject. To get a valid bit flip we must use a logical Pauli X.

(a) Pauli X with output q0 = |1〉. (b) Logical Pauli with output q0 = |1〉L.

Figure 36. In subfigure (a) Pauli X (NOT) gate with input q0 = |0〉 and output q0 = |1〉
representing a induced flip. (b) the encoded Pauli X forces both q0 and q1 to flip using
the two CNOT gates taking our input |ψ〉 = |01〉 and flippling it to |10〉, the logical
equivalent to subfigure (a).

35

www.manaraa.com

Figure 37. Fully encoded 3-qubit bit flip error correction algorithm. Where we expect
|ψf 〉L = |000〉L + |100〉L, but have introduced a logical bit flip on the q0L qubit shown
highlighted in green

Using the logical Pauli X shown in Fig. 36 in Fig. 37 we would expect this flip

to give us the identical syndrome for a flip on the q0 qubit but in its logical form

resulting in |ψf〉L = |011〉L + |111〉L as shown on the truth table in Fig. 1.

Figure 38. Probability distribution function a bit flip error correction circuit where we
expect |ψf 〉L = |011〉L + |111〉L.

In Fig. 38 we prove that the logic of our encoded bit flip error correction circuit

holds true even under the improbable conditions that would induce a logical Pauli

X flip. We measured |ψf〉 = |011010〉 + |101010〉, again read from top to bottom

36

www.manaraa.com

and written left to right, which is exactly the logical equivalent under our encoding

expected from the truth table. Furthermore, the truth table holds for all four logical

equivalents of flips on q0L, q1L, q2L, or no flips.

37

www.manaraa.com

VI. Conclusion

6.1 Future Work

There are many different gates and circuits that were used throughout this research

and each one is fundamental to the entire body of quantum computational research.

We are limited by only having access to one type of quantum computer, those made

using transmons at IBM, and the unitary gates provided to create our gates. Using

these available gates and operators we can continue to explore more complicated

and complex circuits to investigate the benefit of error detection or error correction

further. Another avenue of potential research would be to see if these encodings

improve results on other quantum computers using alternate infrastructures.

The results of our similarity measurements in the encoded bit flip error correction

circuit is likely due to phase flips that occur as the computation progresses. We did

not focus on or measure phase flips in this work. It is likely that if we used error

detection and phase flip detection we could improve these results.

An alternate decomposition of the Toffoli gate could be created using fewer phase

gates and could reduce the number of unitary gates required to run the circuit de-

creasing the depth of the circuit and allowing us to reduce the time risk has to occur.

6.2 Final Thoughts

We have created a useful tool to use unitary operators and error detection im-

plemented in other circuits requiring a Toffli gate that would allow for efficient error

detection. The similarity measures and probability distributions showed superior re-

sults to the unencoded equivalent gate while reducing bias towards the ground state

resulting from the engineering limitations of a physical quantum computer. These

results did not hold through a larger circuit, but with the addition of phase flip de-

38

www.manaraa.com

tection and correction there are multiple avenues to continue working around the

technical limitation in the current era of modern quantum computing. We have used

what is available to us to take one small step forward for creating viable quantum

computational algorithms.

39

www.manaraa.com

Appendix A. Physical and Logical Circuits Implemented in
Qiskit

1
2 ’’’CNOT ’’’
3
4 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
5 from numpy import pi
6
7 qreg_q = QuantumRegister (2, ’q’)
8 creg_c = ClassicalRegister (2, ’c’)
9 circuit = QuantumCircuit(qreg_q , creg_c)

10
11 circuit.reset(qreg_q [0])
12 circuit.reset(qreg_q [1])
13 circuit.cx(qreg_q [1], qreg_q [0])
14 circuit.measure(qreg_q [0], creg_c [0])
15 circuit.measure(qreg_q [1], creg_c [1])

Figure 39. The above source code will provide the unencoded CNOT gate in qiskit for
use on IBM quantum computer.

1
2 ’’’Toffoli ’’’
3
4 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
5 from numpy import pi
6
7 qreg_q = QuantumRegister (3, ’q’)
8 creg_c = ClassicalRegister (3, ’c’)
9 circuit = QuantumCircuit(qreg_q , creg_c)

10
11 circuit.reset(qreg_q [0])
12 circuit.reset(qreg_q [1])
13 circuit.reset(qreg_q [2])
14 circuit.ccx(qreg_q [0], qreg_q [1], qreg_q [2])
15 circuit.measure(qreg_q [0], creg_c [0])
16 circuit.measure(qreg_q [1], creg_c [1])
17 circuit.measure(qreg_q [2], creg_c [2])

40

www.manaraa.com

Figure 40. The above source code will provide the unencoded Toffoli gate in qiskit for
use on IBM quantum computer.

1
2 ’’’Hadamard ’’’
3
4 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
5 from numpy import pi
6
7 qreg_q = QuantumRegister (2, ’q’)
8 creg_c = ClassicalRegister (2, ’c’)
9 circuit = QuantumCircuit(qreg_q , creg_c)

10
11 circuit.reset(qreg_q [0])
12 circuit.reset(qreg_q [1])
13 circuit.h(qreg_q [0])
14 circuit.measure(qreg_q [0], creg_c [0])
15 circuit.measure(qreg_q [1], creg_c [1])

Figure 41. The above source code will provide the unencoded Hadamard gate in qiskit
for use on IBM quantum computer.

1 ’’’Bell State ’’’
2
3 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
4 from numpy import pi
5
6 qreg_q = QuantumRegister (2, ’q’)
7 creg_c = ClassicalRegister (2, ’c’)
8 circuit = QuantumCircuit(qreg_q , creg_c)
9

10 circuit.reset(qreg_q [0])
11 circuit.reset(qreg_q [1])
12 circuit.h(qreg_q [0])
13 circuit.cx(qreg_q [0], qreg_q [1])
14 circuit.barrier(qreg_q [0], qreg_q [1])
15 circuit.measure(qreg_q [0], creg_c [0])
16 circuit.measure(qreg_q [1], creg_c [1])

41

www.manaraa.com

Figure 42. The above source code will provide the unencoded Bell State in qiskit for
use on IBM quantum computer.

1 ’’’Encoded Bell State ’’’
2
3 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
4 from numpy import pi
5
6 qreg_q = QuantumRegister (4, ’q’)
7 creg_c = ClassicalRegister (4, ’c’)
8 circuit = QuantumCircuit(qreg_q , creg_c)
9

10 circuit.reset(qreg_q [0])
11 circuit.reset(qreg_q [1])
12 circuit.reset(qreg_q [2])
13 circuit.reset(qreg_q [3])
14 circuit.x(qreg_q [1])
15 circuit.x(qreg_q [3])
16 circuit.barrier(qreg_q [1], qreg_q [0], qreg_q [2], qreg_q [3])
17 circuit.cx(qreg_q [0], qreg_q [1])
18 circuit.h(qreg_q [0])
19 circuit.cx(qreg_q [0], qreg_q [1])
20 circuit.barrier(qreg_q [3], qreg_q [0], qreg_q [1], qreg_q [2])
21 circuit.cx(qreg_q [0], qreg_q [2])
22 circuit.x(qreg_q [3])
23 circuit.cx(qreg_q [1], qreg_q [3])
24 circuit.barrier(qreg_q [0], qreg_q [1], qreg_q [2], qreg_q [3])
25 circuit.measure(qreg_q [0], creg_c [0])
26 circuit.measure(qreg_q [1], creg_c [1])
27 circuit.measure(qreg_q [2], creg_c [2])
28 circuit.measure(qreg_q [3], creg_c [3])

Figure 43. The above source code will provide the encoded Bell State in qiskit for use
on IBM quantum computer.

42

www.manaraa.com

1 ’’’Bit Flip Error Correction ’’’
2
3 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
4 from numpy import pi
5
6 qreg_q = QuantumRegister (3, ’q’)
7 creg_c = ClassicalRegister (3, ’c’)
8 circuit = QuantumCircuit(qreg_q , creg_c)
9

10 circuit.reset(qreg_q [0])
11 circuit.reset(qreg_q [1])
12 circuit.reset(qreg_q [2])
13 circuit.h(qreg_q [0])
14 circuit.cx(qreg_q [0], qreg_q [1])
15 circuit.cx(qreg_q [0], qreg_q [2])
16 circuit.barrier(qreg_q [1], qreg_q [0], qreg_q [2])
17 circuit.barrier(qreg_q [2], qreg_q [1], qreg_q [0])
18 circuit.cx(qreg_q [0], qreg_q [1])
19 circuit.cx(qreg_q [0], qreg_q [2])
20 circuit.barrier(qreg_q [2], qreg_q [1], qreg_q [0])
21 circuit.ccx(qreg_q [2], qreg_q [1], qreg_q [0])
22 circuit.barrier(qreg_q [0], qreg_q [1], qreg_q [2])
23 circuit.measure(qreg_q [0], creg_c [0])
24 circuit.measure(qreg_q [1], creg_c [1])
25 circuit.measure(qreg_q [2], creg_c [2])

Figure 44. The above source code will provide the unencoded bit flip error correction
circuit in qiskit for use on IBM quantum computer.

1 ’’’Toffoli Equivalent ’’’
2
3 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
4 from numpy import pi
5
6 qreg_q = QuantumRegister (3, ’q’)
7 creg_c = ClassicalRegister (3, ’c’)
8 circuit = QuantumCircuit(qreg_q , creg_c)
9

10 circuit.reset(qreg_q [0])
11 circuit.reset(qreg_q [1])
12 circuit.reset(qreg_q [2])
13 circuit.h(qreg_q [2])
14 circuit.cx(qreg_q [1], qreg_q [2])
15 circuit.tdg(qreg_q [2])
16 circuit.cx(qreg_q [0], qreg_q [2])
17 circuit.t(qreg_q [2])

43

www.manaraa.com

18 circuit.cx(qreg_q [1], qreg_q [2])
19 circuit.tdg(qreg_q [2])
20 circuit.cx(qreg_q [0], qreg_q [2])
21 circuit.tdg(qreg_q [1])
22 circuit.t(qreg_q [2])
23 circuit.cx(qreg_q [0], qreg_q [1])
24 circuit.h(qreg_q [2])
25 circuit.tdg(qreg_q [1])
26 circuit.cx(qreg_q [0], qreg_q [1])
27 circuit.t(qreg_q [0])
28 circuit.s(qreg_q [1])
29 circuit.measure(qreg_q [0], creg_c [0])
30 circuit.measure(qreg_q [1], creg_c [1])
31 circuit.measure(qreg_q [2], creg_c [2])

Figure 45. The above source code will provide the unencoded Toffoli equivalent circuit
in qiskit for use on IBM quantum computer.

1 ’’’Encoded Hadmard ’’’
2
3 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
4 from numpy import pi
5
6 qreg_q = QuantumRegister (2, ’q’)
7 creg_c = ClassicalRegister (2, ’c’)
8 circuit = QuantumCircuit(qreg_q , creg_c)
9

10 circuit.reset(qreg_q [0])
11 circuit.reset(qreg_q [1])
12 circuit.cx(qreg_q [0], qreg_q [1])
13 circuit.h(qreg_q [0])
14 circuit.cx(qreg_q [0], qreg_q [1])
15 circuit.measure(qreg_q [0], creg_c [0])
16 circuit.measure(qreg_q [1], creg_c [1])

Figure 46. The above source code will provide the encoded Hadamard gate in qiskit
for use on IBM quantum computer.

44

www.manaraa.com

1 ’’’Encoded CNOT ’’’
2
3 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
4 from numpy import pi
5
6 qreg_q = QuantumRegister (4, ’q’)
7 creg_c = ClassicalRegister (4, ’c’)
8 circuit = QuantumCircuit(qreg_q , creg_c)
9

10 circuit.reset(qreg_q [0])
11 circuit.reset(qreg_q [1])
12 circuit.reset(qreg_q [2])
13 circuit.reset(qreg_q [3])
14 circuit.x(qreg_q [1])
15 circuit.x(qreg_q [3])
16 circuit.barrier(qreg_q [3], qreg_q [2], qreg_q [1], qreg_q [0])
17 circuit.cx(qreg_q [0], qreg_q [2])
18 circuit.x(qreg_q [3])
19 circuit.cx(qreg_q [1], qreg_q [3])
20 circuit.measure(qreg_q [0], creg_c [0])
21 circuit.measure(qreg_q [1], creg_c [1])
22 circuit.measure(qreg_q [2], creg_c [2])
23 circuit.measure(qreg_q [3], creg_c [3])

Figure 47. The above source code will provide the encoded CNOT gate in qiskit for
use on IBM quantum computer.

45

www.manaraa.com

1
2 ’’’Encoded NOTC ’’’
3
4 from qiskit import QuantumRegister , ClassicalRegister ,

↪→ QuantumCircuit
5 from numpy import pi
6
7 qreg_q = QuantumRegister (4, ’q’)
8 creg_c = ClassicalRegister (4, ’c’)
9 circuit = QuantumCircuit(qreg_q , creg_c)

10
11 circuit.reset(qreg_q [0])
12 circuit.reset(qreg_q [1])
13 circuit.reset(qreg_q [2])
14 circuit.reset(qreg_q [3])
15 circuit.x(qreg_q [1])
16 circuit.x(qreg_q [3])
17 circuit.barrier(qreg_q [3], qreg_q [2], qreg_q [1], qreg_q [0])
18 circuit.cx(qreg_q [2], qreg_q [0])
19 circuit.cx(qreg_q [3], qreg_q [1])
20 circuit.x(qreg_q [1])
21 circuit.measure(qreg_q [0], creg_c [0])
22 circuit.measure(qreg_q [1], creg_c [1])
23 circuit.measure(qreg_q [2], creg_c [2])
24 circuit.measure(qreg_q [3], creg_c [3])

Figure 48. The above source code will provide the encoded inverted CNOT gate in
qiskit for use on IBM quantum computer.

46

www.manaraa.com

Appendix B. Analysis and Parsing of IBM Q Data

1 ’’’Established backends associated with an account ’’’
2
3 from qiskit import IBMQ
4 import numpy as np
5 # API_TOKEN = ’[Token]’
6 # IBMQ.save_account(API_TOKEN)
7
8 Public_Provider = IBMQ.load_account ()
9 AFRL_Provider = IBMQ.get_provider(hub = ’ibm -q-afrl’)

10 AFRL_Provider.backends ()
11 Sim_Backend = AFRL_Provider.get_backend(name = ’

↪→ ibmq_qasm_simulator ’)
12 Toronto_Backend = AFRL_Provider.get_backend(name = ’

↪→ ibmq_toronto ’)
13 Sydney_Backend = AFRL_Provider.get_backend(name = ’ibmq_sydney

↪→ ’)

1
2 ’’’Establishes which backend to use for following code ’’’
3
4 # backend = Sim_Backend
5 # backend = Toronto_Backend
6 backend = Sydney_Backend

1
2 ’’’Runs the circuit on the assigned backend
3 sending multiple runs with named jobs ’’’
4
5 from qiskit import IBMQ , execute
6
7 for i in range (20): # Set range as number of runs required
8
9 JobName = ’Physical Implicit Bitflip 11 Dec 2020_’ + str(i

↪→) # Creates an iterated number to uniquely tag each
↪→ job for retrieval

10 execute(circuit , backend , optimization_level =2, shots =
↪→ 2**13 , job_name=JobName)

1
2 ’’’Establishes JobsRan as a list of all the jobs fitting the

↪→ filters below for a given backend ’’’
3
4 JobSearch = ’Physical Implicit Bitflip 11 Dec 2020_’
5 data_dump = JobSearch + str(backend) + ’.txt’ # Unique name to

↪→ write out counts and related data
6
7 JobsRan = backend.jobs(limit=20, job_name=JobSearch , status=’

↪→ DONE’)
8 # job_name can be found on list of jobs on IBMQ
9 # job_name = ’bar’ will return jobs with ’bar’ in them

10 # such as ’fubar ’, ’crowbar_01 ’, ect
11
12 print(len(JobsRan))
13 print(type(JobsRan))

47

www.manaraa.com

1
2 ’’’Writes a file of all the counts and related data associated

↪→ with each run into the unique file name below ’’’
3
4 f1 = open(data_dump ,’w’) # Date_backend_circuit
5
6 for i in range(len(JobsRan)): # Iterates through each job in

↪→ JobsRan to output desired information
7
8 JobId = str(JobsRan[i]. _job_id)
9 f1.write(’#’ + str(i)+’\n’)

10 f1.write(’Date job created: ’ + str(JobsRan[i].
↪→ creation_date ()) +’\n’)

11 f1.write(’Job ID: ’ + JobId +’\n’)
12 f1.write(’Job Name: ’ + str(JobsRan[i]. _name) +’\n’)
13
14 old_job = backend.retrieve_job(JobId)
15 f1.write(’Backend: ’ + str(old_job._backend) + ’\n’)
16 old_result = old_job.result ()
17 old_counts = old_result.get_counts ()
18 f1.write(’Results: \n’ + str(old_counts) + ’\n\n’)
19
20 f1.close ()

1
2 ’’’Processses the data_dump.txt file into dictionaries of

↪→ results and uses the parse_data () function
3 to seperate valid and invalid entries ’’’
4
5 def parse_data(newcounts , allcounts):
6
7 qb = 6 # Qubits used on physical computer
8 lb = 3 # Number of logical bits total
9 zero = ’01’

10 one = ’10’
11
12 values = []
13 binary = []
14 sigfig = []
15
16 keys = range (2**lb) # Assigns the total number of possible

↪→ states 2^n, where n is the number of logical qubits
17
18 dicts = {}
19 new_counts = {}
20
21
22 for i in keys:
23 bitcountflag = 0 # Flag is used to reset counting from

↪→ 000 to 111 in binary
24 values.append(’placeholder ’) # Appends a dummy

↪→ variable to be overwritten into the values [] list
25 binary.append(f’{i:06b}’) # Expresses i in binary form

↪→ from 000000 to 111111
26
27 for j in range(lb): # Iterates the total length of

↪→ logical bits

48

www.manaraa.com

28 sigfig.append(’sf’+str(j)) # Sets the sigfig right
↪→ to left to be converted , so in 001, j == 0
↪→ selects "1"

29 sigfig[j] = binary[i][qb -j-1] # Pulls integer
↪→ values of the binary bit from right to left

30
31 if sigfig[j] == ’0’: # If the value is 0, the

↪→ logical zero replaces the respective sigfig
↪→ integer

32 sigfig[j] = zero
33 else:
34 sigfig[j] = one # If the value is 1, the

↪→ logical zero replaces the respective
↪→ sigfig integer

35 bitcountflag = bitcountflag + 1 # Counts up to the
↪→ number of physical bits (qb) minus logical
↪→ bits (lb)

36
37 if bitcountflag == (qb - lb): # When the logical

↪→ representation of each bit is set the values
↪→ are concatenated

38 values[i] = sigfig[lb -lb]+ sigfig[lb -(lb -1)]+
↪→ sigfig[lb -(lb -2)] # In our example above
↪→ 001 becomes 010110

39
40 for j in keys: # Now the key:value pairs in each

↪→ dicationary are exchanged
41 try:
42 new_counts[values[j]] = older_counts[values[j]] #

↪→ Logical bit values are replaced by their
↪→ physical counts

43 # If a key is not a valid logical bitsequence , it is not
↪→ copied

44 except KeyError:
45 new_counts[values[j]] = 0 # If a dictionary value

↪→ is blank it is replaced with a zero
46
47
48 return new_counts , older_counts # Returns new_counts as a

↪→ dictionary with keys of valid logical sequences
49 # and old_counts with keys

↪→ of all possible
↪→ sequences

50
51 import csv
52 n = 0
53 m = 0
54 d = []
55 ind_counts = []
56 ind_valid_counts = []
57 new_counts = {}
58
59 with open(data_dump , ’r’) as f: # data_dump is created in the

↪→ proceess that parses counts and related data
60 reader = csv.reader(f, delimiter=’\n’)
61 for row in reader:
62 try:
63 if row[n]. startswith(’{’): # Grabs all

49

www.manaraa.com

↪→ dictionaries of counts as strings from
↪→ data_dump and places them in d[]

64 d.append(row [0])
65 else:
66 pass
67 except IndexError:
68 pass
69
70
71 older_counts = eval(d[0]) # Places the string key:values of d

↪→ [0] as a dictionary
72 parsed_data2 = parse_data(new_counts , older_counts) # Uses the

↪→ parse_data function to only select the valid counts
73 # parsed_data2 [0] are valid counts parsed_data2 [1] are all

↪→ counts
74 # parsed_data2 is a list that holds the dummy values to add up

↪→ counts
75
76 for i in range(len(JobsRan)):
77
78 new_counts = {}
79
80 older_counts = eval(d[i]) # See comments above for details
81 parsed_data = parse_data(new_counts , older_counts) # See

↪→ comments above for breakdown of parse_data function
82 ind_counts.append(parsed_data [1])
83 ind_valid_counts.append(parsed_data [0])
84
85
86 if parsed_data [0] != parsed_data2 [0]: # Adds up all the

↪→ counts from the JobsRan in the allowed states
87 for key in parsed_data [0]: # parsed_data is a tuple

↪→ with the processed dictionary in the 0th position
88
89 if key in parsed_data2 [0]: # Ensures given key is

↪→ in both dictionaries
90 parsed_data2 [0][key] = str(int(parsed_data2

↪→ [0][key]) + int(parsed_data [0][key])) #
↪→ Sums up values of dictionaries

91 else:
92 pass
93 else:
94 pass
95
96
97 if parsed_data [1] != parsed_data2 [1]: # Adds up all the

↪→ counts from the JobsRan in all states
98 for key in parsed_data [1]: # parsed_data is a tuple

↪→ with the unprocessed dictionary in the 1st
↪→ position

99
100 if key in parsed_data2 [1]: # Ensures given key is

↪→ in both dictionaries
101 parsed_data2 [1][key] = str(int(parsed_data2

↪→ [1][key]) + int(parsed_data [1][key])) #
↪→ Sums up values of dictionaries

102 else:
103 pass

50

www.manaraa.com

104 else:
105 pass
106
107 sum_all_counts = parsed_data2 [1]
108 sum_all_valid_counts = parsed_data2 [0]
109 # ind_counts are all individual counts
110 # ind_valid_counts are all individual valid counts
111
112 theoretical_all_counts = {’110110 ’: 0, ’100011 ’: 0, ’010110 ’:

↪→ 0, ’100101 ’: 0, ’010000 ’: 0, ’001101 ’: 0, ’100100 ’: 0, ’
↪→ 110011 ’: 0, ’100001 ’: 0, ’000111 ’: 0, ’110000 ’: 0, ’
↪→ 101100 ’: 0, ’011101 ’: 0, ’001100 ’: 0, ’011011 ’: 0, ’
↪→ 010011 ’: 0, ’001010 ’: 0, ’110111 ’: 0, ’101111 ’: 0, ’
↪→ 111110 ’: 0, ’011001 ’: 0, ’110101 ’: 0, ’010001 ’: 0, ’
↪→ 001011 ’: 0, ’001001 ’: 0, ’101001 ’: int (2**13/2) , ’111101 ’
↪→ : 0, ’010010 ’: 0, ’011111 ’: 0, ’011010 ’: 0, ’101000 ’: 0,
↪→ ’001110 ’: 0, ’100110 ’: 0, ’110010 ’: 0, ’000100 ’: 0, ’
↪→ 001111 ’: 0, ’010111 ’: 0, ’011000 ’: 0, ’100111 ’: 0, ’
↪→ 000010 ’: 0, ’111111 ’: 0, ’101010 ’: int (2**13/2) , ’111011 ’
↪→ : 0, ’111010 ’: 0, ’000001 ’: 0, ’101110 ’: 0, ’000011 ’: 0,
↪→ ’100010 ’: 0, ’000110 ’: 0, ’000101 ’: 0, ’101101 ’: 0, ’
↪→ 001000 ’: 0, ’100000 ’: 0, ’011100 ’: 0, ’000000 ’: 0, ’
↪→ 010100 ’: 0, ’010101 ’: 0, ’111001 ’: 0, ’111000 ’: 0, ’
↪→ 011110 ’: 0, ’111100 ’: 0, ’101011 ’: 0, ’110100 ’: 0, ’
↪→ 110001 ’: 0}

113
114 print("sum of all_counts")
115 print(sum_all_counts)
116
117 print("Sum of all valid_counts")
118 print(sum_all_valid_counts)
119
120 print("theoretical_all_counts")
121 print(theoretical_all_counts)
122
123 print("ind_counts")
124 print(ind_counts)
125
126 print("ind_valid_counts")
127 print(ind_valid_counts)

1
2 ’’’Sum of all runs and calculates similarity measures ’’’
3
4 def shot_count(counts):
5 shots = 0
6
7 for key in counts:
8 shots = shots + int(counts[key])
9

10 return shots
11
12 def pdf(counts , theory):
13
14 probability_difference = theory.copy()
15
16 shots = 0

51

www.manaraa.com

17
18 for key in counts:
19 shots = shots + int(counts[key])
20
21 shots = float(shots)
22
23
24
25 for key in probability_difference: # parsed_data is a

↪→ tuple with the processed dictionary in the 0th
↪→ position

26
27 if key in counts: # Ensures given key is in both

↪→ dictionaries
28
29 probability_difference[key] = abs(float(int(counts

↪→ [key])/(shots) - float(theoretical_all_counts
↪→ [key]) /8192.0)) #Finds difference between
↪→ theoretical value and measured values

30
31 else:
32 pass
33
34 sum = 0.0
35
36 for key in probability_difference:
37 sum = sum + probability_difference[key]
38
39 mu = 1 - (sum /2)
40
41
42 return mu
43
44 print(’Average of 20 runs in all 64 possible states have a

↪→ similarity measure of:’)
45 mu_sum_all_counts = pdf(sum_all_counts , theoretical_all_counts

↪→)
46
47 shots = shot_count(sum_all_counts)
48
49 print(’This run used ’ + str(shots) + ’ shots ’)
50 print(mu_sum_all_counts)
51
52
53 print(’All 8 valid states have a similarity measure of:’)
54 mu_sum_all_valid_counts = pdf(sum_all_valid_counts ,

↪→ theoretical_all_counts)
55
56
57
58 shots = shot_count(sum_all_valid_counts)
59
60 print(’This run used ’ + str(shots) + ’ shots ’)
61 print(mu_sum_all_valid_counts)
62
63 ’’’Individual runs ’’’
64
65 mu_ind_counts = []

52

www.manaraa.com

66 mu_ind_counts_shots = []
67
68 print(’Each run of all 64 states have a similarity measure of:

↪→ ’)
69
70 for i in range(len(ind_counts)):
71 mu = pdf(ind_counts[i], theoretical_all_counts)
72 mu_ind_counts.append(mu)
73 mu_ind_counts_shots.append(shot_count(ind_counts[i]))
74
75 print(mu_ind_counts)
76 print(mu_ind_counts_shots)
77
78 mu_ind_valid_counts = []
79 mu_ind_valid_counts_shots = []
80
81 print(’Each run of all 8 valid states have a similarity

↪→ measure of:’)
82
83 for i in range(len(ind_valid_counts)):
84 mu = pdf(ind_valid_counts[i], theoretical_all_counts)
85 mu_ind_valid_counts.append(mu)
86 mu_ind_valid_counts_shots.append(shot_count(

↪→ ind_valid_counts[i]))
87
88
89 print(mu_ind_valid_counts)
90 print(mu_ind_valid_counts_shots)

1
2 ’’’Plots similarity measures as histograms ’’’
3
4 import matplotlib.pyplot as plt
5 import numpy as np
6 np.random.seed (1)
7
8 n_bins = 3
9

10 x = mu_ind_counts
11 y = mu_ind_valid_counts
12 z = mus_saved #from physical
13
14 fig , ax = plt.subplots ()
15 ax.hist(x, n_bins , color=’lightblue ’, alpha =0.5, label=’Without

↪→ error detection ’,
16 edgecolor=’black ’, linewidth =1.2, width =0.008)
17 ax.hist(y, n_bins , color=’salmon ’, alpha =0.5, label=’With

↪→ error detection ’,
18 edgecolor=’black ’, linewidth =1.2, width =0.008)
19 ax.hist(z, n_bins , color=’yellow ’, alpha =0.5, label=’Unencoded

↪→ ’,
20 edgecolor=’black ’, linewidth =1.2, width =0.008)
21
22
23 ax.set(title=’Similarity Measure of 20 runs Bit Flip Error

↪→ Correction ’, ylabel=’Number of runs with mu’)
24 ax.legend ()

53

www.manaraa.com

25 ax.margins (0.05)
26 ax.set_ylim(bottom =0)
27 plt.savefig(’Similarity Measure of 20 runs Bit Flip Error

↪→ Correction.png’)
28 plt.show()

1
2 ’’’Plots probability distribution function as histogram ’’’
3
4 from qiskit.tools.visualization import plot_histogram
5
6 plot_histogram(sum_all_valid_counts ,
7 title=str(len(JobsRan)) + ’ runs ’ + JobSearch

↪→ + ’ on ’ + str(backend), figsize =(7,7)).
↪→ savefig(’Logical ’ + str(len(JobsRan)) + ’
↪→ runs ’ + JobSearch + ’ on ’ + str(backend
↪→))

8 plot_histogram(sum_all_valid_counts ,
9 title=str(len(JobsRan)) + ’ runs ’ + JobSearch

↪→ + ’ on ’ + str(backend), figsize =(7,7))

54

www.manaraa.com

Bibliography

1. S. McCartney, Eniac: The Triumphs and Tragedies of the World’s First Com-

puter. Berkley Publishing Group, 2001.

2. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.

Cambridge University Press, 2019.

3. M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, “Dissipative

quantum church-turing theorem,” Phys. Rev. Lett., vol. 107, p. 120501, Sep 2011.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.107.120501

4. E. h. Shaik and N. Rangaswamy, “Implementation of quantum gates based

logic circuits using ibm qiskit.” 2020 5th International Conference on

Computing, Communication and Security (ICCCS), Computing, Communication

and Security (ICCCS), 2020 5th International Conference on, pp. 1 – 6, 2020.

[Online]. Available: https://afit.idm.oclc.org/login?url=http://search.ebscohost.

com/login.aspx?direct=true&db=edseee&AN=edseee.9277010&site=eds-live

5. R. P. Feynman, “Quantum mechanical computers,” Optics News, vol. 11, no. 2,

pp. 11–20, Feb 1985. [Online]. Available: http://www.osa-opn.org/abstract.cfm?

URI=on-11-2-11

6. M. Grassl, T. Beth, and T. Pellizzari, “Codes

for the quantum erasure channel.” 1996. [Online]. Avail-

able: https://afit.idm.oclc.org/login?url=http://search.ebscohost.com/login.

aspx?direct=true&db=edsarx&AN=edsarx.quant-ph%2f9610042&site=eds-live

7. R. Baumann, “Soft errors in advanced computer systems,” IEEE Design Test of

Computers, vol. 22, no. 3, pp. 258–266, 2005.

55

www.manaraa.com

8. S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for

beginners.” Reports on Progress in Physics, vol. 76, no. 7, pp. 1 – 35, 2013.

[Online]. Available: https://afit.idm.oclc.org/login?url=http://search.ebscohost.

com/login.aspx?direct=true&db=asn&AN=90437493&site=eds-live

9. E. Knill, “Quantum computing with realistically noisy devices.” Na-

ture, vol. 434, no. 7029, pp. 39 – 44, 2005. [Online]. Avail-

able: https://afit.idm.oclc.org/login?url=http://search.ebscohost.com/login.

aspx?direct=true&db=asn&AN=16272453&site=eds-live

10. C. E. Mackenzie, Coded character sets, history and development. Addison-

Wesley, 1980.

11. M. Hilbert and P. Lopez, “The worlds technological capacity to store, communi-

cate, and compute information,” Science, vol. 332, no. 6025, p. 60–65, 2011.

12. A. Barenco, C. H. Bennett, R. Cleve, D. P. Divincenzo, N. Margolus, P. Shor,

T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum

computation,” Physical Review A, vol. 52, no. 5, p. 3457–3467, 1995.

13. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,

M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit

design derived from the cooper pair box,” Phys. Rev. A, vol. 76, p. 042319, Oct

2007. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.76.042319

14. J. M. Chow, J. M. Gambetta, A. D. Córcoles, S. T. Merkel, J. A.

Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, J. R.

Rozen, M. B. Ketchen, and M. Steffen, “Universal quantum gate set

approaching fault-tolerant thresholds with superconducting qubits,” Phys.

56

www.manaraa.com

Rev. Lett., vol. 109, p. 060501, Aug 2012. [Online]. Available: https:

//link.aps.org/doi/10.1103/PhysRevLett.109.060501

15. A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A, vol. 32,

pp. 3266–3276, Dec 1985. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevA.32.3266

57

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2021 Master’s Thesis Sept 2019 — Mar 2021

Quantum Computing Using Error Detection

Hanks, Simeon R., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENP-MS-21-M-120

Air Force Research Laboratory
525 Brooks Road
Rome, NY 13441

AFRL/RITQ

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Quantum computers need to be able to control highly entangled quantum states in the presence of environmental
perturbations that lead to errors in calculations. Progress in superconducting qubits has enabled the development of
computers capable of running small quantum circuits. The current era of Noise Intermediate Scale Quantum computing
has a high error rate. To alleviate this error rate we apply an encoding scheme that allows us to remove results with
known errors improving the quality of our results. The encoding uses multiple qubits as a single logical qubit and
balances the natural tendency of state-of-the-art quantum computers to decohere towards the ground state. We use a
mix of ones and zeroes in each logical qubit in such a way that we can identify and remove results that have violated our
specified encoding pattern. The statistical performance of the circuits is improved by retaining the shots that maintained
the encoding. Bit flip error detection is applied to the Toffoli gate and produces improved probability distribution
functions as well as enhanced similarity measures when compared to its unencoded equivalent.

Quantum Computing, Error Correction, Error Detection

U U U UU 55

Dr. Weeks David, AFIT/ENP

(937) 255-3636 x4561; david.weeks@afit.edu

	Error Detection in Quantum Algorithms
	Recommended Citation

	tmp.1629985394.pdf.GFCNO

